Standards-Based Report Card Rubric: 2nd Grade Math

Report Card Section	Report Card Statement	Standards Assessed	Term Assessed	Assessment of Mastery		
				Mastered Grade Level Standard (3)	Approaching Grade Level Standard (2)	Insufficient Progress on Grade Level Standard (1)
Numerical Representations \& Relationships	I can use concrete \& pictorial models to compose \& decompose numbers up to 1,200 in more than one way.	2.2A Use concrete \& pictorial models to compose \& decompose numbers up to 1,200 in more than one way as a sum of so many thousands, hundreds, tens, \& ones	1,2,3, 4	Consistently and independently composes and decomposes numbers in more than one way using concrete models and pictorial models	Composes and decomposes numbers using concrete or pictorial models or both with support	Limited ability/unable to compose and decompose numbers in one way
	I can use standard, word, \& expanded forms to represent numbers up to 1,200.	2.2B Use standard, word, \& expanded forms to represent numbers up to 1,200	1,2,3, 4	Consistently and independently represents numbers up to 1,200 using words, expanded, and standard form	Represents numbers up to 1,200 using words, expanded, and standard form with support (i.e., teacher prompt)	Limited ability/unable to represent numbers up to 1,200 using words, expanded, and standard form
	I can use place value to compare \& order whole numbers up to 1,200 using comparative language, numbers, \& symbols (<, >, or $=$).	2.2D Use place value to compare \& order whole numbers up to 1,200 using comparative language, numbers, \& symbols ($<,>$, or $=$)	1,2,3, 4	Consistently and independently compares and orders whole numbers up to 1,200 using symbols $<,>$, or $=$, and reads the comparison using language such as greater than, less than and equal to	Compares two numbers either verbally or using symbols with support (i.e., teacher prompt)	Limited ability/unable to compare two numbers verbally or using symbols
	I can name the whole number that corresponds to a specific point on a	2.2F Name the whole number that corresponds to a specific point on a number line	1,2, 3, 4	Consistently and independently names the whole number that corresponds to a specific	Inconsistently names the whole number that corresponds to a specific point on a number line or	Limited ability/unable to name the whole number as distances from 0 on a number line

	number line.			point on a number line independently	names with support	
	I can count unit fractions beyond one whole.	2.3C Use concrete models to count fractional parts beyond one whole using words \& recognize how many parts it takes to equal one whole	4	Consistently and independently uses concrete models to count fractional parts beyond one whole using words and recognize how many parts it takes to equal one whole (i.e., of using words: "one-fourth, two-fourths, three-fourths, four-fourths) and beyond one whole (i.e., five-fourths or one and one-fourth)	Uses concrete models to count fractional parts using words and recognizes how many parts it takes to equal one whole with supports (i.e., teacher prompt)	Limited ability/unable to use concrete models to count fractional parts using words and recognize how many parts it takes to equal one whole
Computations \& Algebraic Relationships	I can add up to four two-digit numbers \& subtract two-digit numbers using mental strategies \& algorithms based on knowledge of place value \& properties of operations. (standard algorithm T3 \& T4 only)	2.4B Add up to four two-digit numbers \& subtract two-digit numbers using mental strategies \& algorithms based on knowledge of place value \& properties of operations	1, 2, 3, 4	Consistently and independently adds up to four two-digit numbers and subtracts two-digit numbers using mental math strategies and algorithms based on knowledge of place value \& properties of operations T1, T2: no standard algorithm T3, T4: including standard algorithm	Adds four two-digit numbers or subtracts two-digit numbers using mental strategies and algorithms based on knowledge of place value and properties of operations or both operations with support	Limited ability/unable to add up four two-digit numbers or subtract two-digit numbers
	I can solve one-step \& multi-step problems involving addition \& subtraction within 1,000 using a variety of strategies based on place value, including	2.4C Solve one-step \& multi-step word problems involving addition \& subtraction within 1,000 using a variety of strategies based on place value,	1, 2, 3, 4	Consistently and independently solves one-step and multi-step word problems involving addition and subtraction within 1,000 using a variety of strategies	Independently solves one-step word problems involving addition and subtraction within 1,000 using a variety of strategies based on place value, including	Solves one-step word problems involving addition and subtraction using one strategy with support

	algorithms. T1, T2: add \& subtract 2-digit numbers; no standard algorithm T3, T4: 3-digit numbers; including standard algorithm	including algorithms		based on place value T1, T2: add \& subtract 2-digit numbers; no standard algorithm T3, T4: 3-digit numbers; including standard algorithm	algorithms (T3, T4 only)	
	I can generate \& solve addition \& subtraction of whole numbers within 1,000 in problem situations. T2: add \& subtract 2-digit numbers; no standard algorithm T3, T4: 3-digit numbers; including standard algorithm	2.4D Generate \& solve problem situations for a given mathematical number sentence involving addition \& subtraction of whole numbers within 1,000	2, 3, 4	Consistently and independently generates and solves problem situations for a given number sentence involving addition and subtraction of whole numbers within 1,000 , where the unknown is any of the terms $\begin{gathered} \text { (i.e., } 234+123=\square \text {, } \\ 234+\square=357, \\ \square+123=357, \\ 357-\square=123 \text {) } \end{gathered}$ T2: add \& subtract 2-digit numbers; no standard algorithm T3, T4: 3-digit numbers; including standard algorithm	Generates and solves problem situations for a given number sentence involving addition and subtraction of whole numbers within 1,000 , where the result is unknown (i.e., $234+123=\square$ and $456-213=\square$)	Solves a number sentence involving addition and subtraction of whole numbers with support
	I can model, create, \& describe contextual multiplication situations in which equivalent sets of concrete objects are joined.	 describe contextual multiplication situations in which equivalent sets of concrete objects are joined	3, 4	Consistently and independently models, describes, and creates contextual multiplication situations in which equivalent sets of concrete objects are joined for various problem types (product	Models and describes contextual multiplication situations in which equivalent sets of concrete objects are joined with support, but unable to independently create contextual situations	Limited ability/unable to model contextual multiplication situations in which equivalent sets of concrete objects are joined

				unknown, group size unknown, group number unknown)		
	I can model, create, \& describe contextual division situations in which a set of concrete objects is separated into equivalent sets.	2.6B Model, create, \& describe contextual division situations in which a set of concrete objects is separated into equivalent sets	3, 4	Consistently and independently models, describes, and creates contextual division situations in which a set of concrete objects is separated into equivalent sets for various problem types (group size unknown, group number unknown)	Models and describes contextual division situations in which a set of concrete objects is separated into equivalent sets with support, but unable to independently create contextual situations	Limited ability/unable to model contextual division situations in which a set of concrete objects is separated into equivalent sets
	I can represent \& solve addition \& subtraction word problems where unknowns may be any one of the terms in the problem.	2.7C Represent \& solve addition \& subtraction word problems where unknowns may be any one of the terms in the problem	1, 2, 3, 4	Consistently and independently represents and solves addition and subtraction word problems using objects, diagrams, language, and numbers, where unknowns may be any one of the terms in the problem (i.e., Jasmine has 87 books. She has some paperback books and 39 hardback books. How many paperback books does Jasmine have?)	Represents and solves addition and subtraction word problems in one way or solves in multiple ways with support	Limited ability/unable to represent and solve addition and subtraction word problems in one way
 Measurement	I can classify and sort 3D solids based on attributes.	2.8B Classify \& sort 3D solids including spheres, cones cylinders, rectangular prisms (including cubes as special rectangular prisms), \& triangular prisms, based on	1, 2, 3, 4	Consistently and independently classifies and sorts all 3D solids including spheres, cones cylinders, rectangular prisms (including cubes as special rectangular prisms), and triangular	Inconsistently classifies and sorts 3D solids based on attributes using formal geometric language or classifies and sorts with supports	Limited ability/unable to classify and sort 3D solids based on attributes

| | | | information on both
 pictographs and bar
 graphs | support | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Consistently $=$ Able to complete tasks with $85-100 \%$ accuracy of the time over the assessment term (i.e., They are mostly accurate.)

Inconsistently = Able to complete tasks with $50-84 \%$ accuracy of the time over the assessment term (i.e., They are accurate more than half the time.)
With supports = Instructional tools (i.e., math tools, dictionaries, word walls) or teacher prompts (i.e., suggesting strategy, asking questions, giving sentence stems)

Limited Ability/Unable to = Able to complete tasks with less than 50% accuracy of the time over the assessment term

